嵌入式pos机论文,一周干货回顾&总结

 新闻资讯  |   2023-05-03 14:33  |  投稿人:pos机之家

网上有很多关于嵌入式pos机论文,一周干货回顾&总结的知识,也有很多人为大家解答关于嵌入式pos机论文的问题,今天pos机之家(www.poszjia.com)为大家整理了关于这方面的知识,让我们一起来看下吧!

本文目录一览:

1、嵌入式pos机论文

嵌入式pos机论文

计算机视觉研究院专栏

作者:Edison_G

本周我们“计算机视觉研究院”主要推送了目标检测干货及中国人工智能大会内容,今天给大家总结一下!

公众号ID|ComputerVisionGzq

学习群|扫码在主页获取加入方式

半监督辅助目标检测:自训练+数据增强提升精度(附源码下载)

论文地址:https://arxiv.org/pdf/2005.04757.pdf

源代码:https://github.com/google-research/ssl_detection/

半监督学习 (SSL) 有可能提高使用未标记数据的机器学习模型的预测性能。尽管最近取得了显着进展,但SSL的演示范围主要是图像分类任务。 有研究者提出了STAC,这是一种用于视觉目标检测的简单而有效的SSL框架以及数据增强策略。STAC从未标记的图像中部署本地化目标的高度可信的伪标签,并通过数据增强提升一致性来更新模型。

用已有的标签图像训练一个教师模型(teacher model)用来生成伪标签(有点知识蒸馏那味了,这个模型是Faster-RCNN)。

用训练好的模型推理剩余的未标注的图像,生成伪标签。

对未标注的数据进行增强,同步伪标签(图像旋转的时候也要将标签的坐标同步呀,不然不都错位了吗)。

使用半监督Loss来训练检测器

SSD7 | 对嵌入式友好的目标检测网络,产品落地

论文地址:https://doi.org/10.3390/app11031096

提出了一种轻量级目标检测网络Single-Shot MultiBox Detector(SSD)7种特征融合和注意机制(FFAM),该网络通过减少卷积层数,节省了存储空间,减少了计算量。研究者有提出了一种新的特征融合和注意机制(FFAM)方法来提高检测精度。首先,FFAM方法将高级语义信息丰富的特征图与低级特征图进行融合,提高了小目标的检测精度。采用由通道和空间注意模块级联的轻量级注意机制,增强目标的上下文信息,引导网络关注其易于识别的特征。

目标检测新框架:大幅度提升检测精度(附源代码下载)

论文地址:https://arxiv.org/pdf/2007.11056.pdf源代码地址:https://github.com/Megvii-BaseDetection/BorderDet

研究者提出了一种简单高效的算子,称为 Border-Align,从边界的极值点提取“边界特征”以增强点特征。基于BorderAlign,研究者设计了一种称为BorderDet的新型检测架构,它明确利用边界信息进行更强的分类和更准确的定位。

知识星球也给大家共享了一些基础知识

© THE END

转载请联系本公众号获得授权

计算机视觉研究院学习群等你加入!

计算机视觉研究院主要涉及深度学习领域,主要致力于人脸检测、人脸识别,多目标检测、目标跟踪、图像分割等研究方向。研究院接下来会不断分享最新的论文算法新框架,我们这次改革不同点就是,我们要着重”研究“。之后我们会针对相应领域分享实践过程,让大家真正体会摆脱理论的真实场景,培养爱动手编程爱动脑思考的习惯!

计算机视觉研究院

公众号ID|ComputerVisionGzq

感谢大家一致的关注,如果对我们平台有任何建议,请在后天回复留言,我们会根据你们的留言建议,不断去优化、提升我们“计算机视觉研究院”的质量!

以上就是关于嵌入式pos机论文,一周干货回顾&总结的知识,后面我们会继续为大家整理关于嵌入式pos机论文的知识,希望能够帮助到大家!

转发请带上网址:http://www.poszjia.com/news/36480.html

你可能会喜欢:

版权声明:本文内容由互联网用户自发贡献,该文观点仅代表作者本人。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如发现本站有涉嫌抄袭侵权/违法违规的内容, 请发送邮件至 babsan@163.com 举报,一经查实,本站将立刻删除。