网上有很多关于如何检测pos机,手把手教物体检测——M2Det的知识,也有很多人为大家解答关于如何检测pos机的问题,今天pos机之家(www.poszjia.com)为大家整理了关于这方面的知识,让我们一起来看下吧!
本文目录一览:
1、如何检测pos机
如何检测pos机
模型介绍物体检测模型M2Det,是北京大学&阿里达摩院提出的Single-shot目标检测新模型,使用multi-level特征。在MS-COCO benchmark上,M2Det的单尺度版本和多尺度版本AP分别达到41.0和44.2 。
该模型的特点:
· 提出多级特征金字塔网络MLFPN。MLFPN的结构如下:
· 基于提出的MLFPN,结合SSD,提出一种新的Single-shot目标检测模型M2Det
模型使用a) 下载源码:"。
b) 在data文件夹下新建VOCdevkit文件夹,导入VOC格式的数据集。如下图:c) 下载权重文件,放在weights(如果没有就在根目录新建)文件夹下面。d) 修改voc0712.py里面的类别。将:
VOC_CLASSES = ( '__background__', # always index 0 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor')
修改为:
VOC_CLASSES = ( '__background__', # always index 0 'aircraft', 'oiltank')
e) 选择配置文件。本例采用configs->m2det512_vgg.py配置文件
model = dict( type = 'm2det', input_size = 512, init_net = True, pretrained = 'weights/vgg16_reducedfc.pth', m2det_config = dict( backbone = 'vgg16', net_family = 'vgg', # vgg includes ['vgg16','vgg19'], res includes ['resnetxxx','resnextxxx'] base_out = [22,34], # [22,34] for vgg, [2,4] or [3,4] for res families planes = 256, num_levels = 8, num_scales = 6, sfam = False, smooth = True, num_classes = 3,#更改类别,按照数据集里面的类别数量+1(背景) ), rgb_means = (104, 117, 123), p = 0.6, anchor_config = dict( step_pattern = [8, 16, 32, 64, 128, 256], size_pattern = [0.06, 0.15, 0.33, 0.51, 0.69, 0.87, 1.05], ), save_eposhs = 10, weights_save = 'weights/' #保存权重文件的目录 )train_cfg = dict( cuda = True,#是否使用cuda warmup = 5, per_batch_size = 2,#修改batchsize,按照自己显卡的能力修改 lr = [0.004, 0.002, 0.0004, 0.00004, 0.000004],#学利率调整,调整依据step_lr的epoch数值。 gamma = 0.1, end_lr = 1e-6, step_lr = dict( COCO = [90, 110, 130, 150, 160], VOC = [100, 150, 200, 250, 300], # unsolve ), print_epochs = 10,#每个10个epoch保存一个模型。 num_workers= 2,#线程数,根据CPU调整 )test_cfg = dict( cuda = True, topk = 0, iou = 0.45, soft_nms = True, score_threshold = 0.1, keep_per_class = 50, save_folder = 'eval' )loss = dict(overlap_thresh = 0.5, prior_for_matching = True, bkg_label = 0, neg_mining = True, neg_pos = 3, neg_overlap = 0.5, encode_target = False)optimizer = dict(type='SGD', momentum=0.9, weight_decay=0.0005)#激活函数。
#修改dataset,本例采用VOC2007数据集,将COCO的删除即可,删除VOC2012
dataset = dict( VOC = dict( train_sets = [('2007', 'trainval')], eval_sets = [('2007', 'test')], ) )import osimport oshome = ""#home路径,默认是linux的,本例采用win10,讲其修改为""VOCroot = os.path.join(home,"data/VOCdevkit/")COCOroot = os.path.join(home,"data/coco/")f) 删除pycocotools
在安装pycocotools工具前提下,将程序自带的pycocotools工具包删除。
修改coco.py
将:
from utils.pycocotools.coco import COCOfrom utils.pycocotools.cocoeval import COCOevalfrom utils.pycocotools import mask as COCOmask
修改为:
from pycocotools.coco import COCOfrom pycocotools.cocoeval import COCOevalfrom pycocotools import mask as COCOmask
g) 修改nms_wrapper.py将:
from .nms.cpu_nms import cpu_nms, cpu_soft_nmsfrom .nms.gpu_nms import gpu_nms# def nms(dets, thresh, force_cpu=False):# """Dispatch to either CPU or GPU NMS implementations."""# if dets.shape[0] == 0:# return []# if cfg.USE_GPU_NMS and not force_cpu:# return gpu_nms(dets, thresh, device_id=cfg.GPU_ID)# else:# return cpu_nms(dets, thresh)def nms(dets, thresh, force_cpu=False): """Dispatch to either CPU or GPU NMS implementations.""" if dets.shape[0] == 0: return [] if force_cpu: return cpu_soft_nms(dets, thresh, method = 1) #return cpu_nms(dets, thresh) return gpu_nms(dets, thresh)
修改为:
from .nms.py_cpu_nms import py_cpu_nmsdef nms(dets, thresh, force_cpu=False): """Dispatch to either CPU or GPU NMS implementations.""" if dets.shape[0] == 0: return [] if force_cpu: return py_cpu_nms(dets, thresh) return py_cpu_nms(dets, thresh)h) 修改train.py
修改选定配置的文件
parser.add_argument('-c', '--config', default='configs/m2det512_vgg.py')
修改数据的格式parser.add_argument('-d', '--dataset', default='VOC', help='VOC or COCO dataset')
然后就可以开始训练了。
i) 修改test.py
parser = argparse.ArgumentParser(description='M2Det Testing')parser.add_argument('-c', '--config', default='configs/m2det512_vgg.py', type=str)#选择配置文件,和训练的配置文件对应parser.add_argument('-d', '--dataset', default='VOC', help='VOC or COCO version')parser.add_argument('-m', '--trained_model', default='weights/M2Det_VOC_size512_netvgg16_epoch30.pth', type=str, help='Trained state_dict file path to open')parser.add_argument('--test', action='store_true', help='to submit a test file')
修改voc0712.py282行的xml路径。将:
annopath = os.path.join( rootpath, 'Annotations', '{:s}.xml')
改为:
annopath = rootpath+'/Annotations/{:s}.xml'
测试结果:
j) 可视化结果修改demo.py中超参数
parser.add_argument('-c', '--config', default='configs/m2det512_vgg.py', type=str)parser.add_argument('-f', '--directory', default='imgs/', help='the path to demo images')parser.add_argument('-m', '--trained_model', default='weights/M2Det_VOC_size512_netvgg16_epoch30.pth', type=str, help='Trained state_dict file path to open')
然后将部分测试图片放到imgs文件夹下面,运行demo.py.
以上就是关于如何检测pos机,手把手教物体检测——M2Det的知识,后面我们会继续为大家整理关于如何检测pos机的知识,希望能够帮助到大家!
